Forecasting for Environmental Flows –

What does an accurate and timely runoff forecast buy you?

Chad Moore and Emily Thomas

California Cooperative Snow Conference November 15, 2018

San Joaquin River Restoration Program

RESTORATION FLOW SCHEDULING

San Joaquin River Restoration Program Flow Releases

San Joaquin River, Restoration Releases from Friant Dam, as Reported by Exhibit B of the Stipulation of Settlement^{1,2}

- Hydrographs reflect assumptions about seepage losses and tributary inflows which are specified in the settlement

Flow Timing

Forecast Uncertainty

Runoff Forecast Verification

DWR Bulletin 120

NWS River Forecast Center

Forecast error for both models sometimes on the order of Millerton Lake active storage capacity ~395 TAF

What tools can narrow the forecast spread, especially between 90% and 50%?

Restoration Flow Scheduling

Summary

- Majority of release volume for environmental flows is before most of the WY runoff reaches Millerton Lake
- Need to make decisions on biological objectives by April 1

Accurate April 1 forecasts are key to prevent over or under releases of Restoration Flows

WATER TEMPERATURE MANAGEMENT

Temperature Objectives

Table 3-1.
Temperature Objectives for the Restoration of Central Valley Chinook Salmon

Monthly Water Temperature Objectives for the San Joaquin River Restoration Program												
Spring-Run and Fall-Run Chinook Salmon												
Life Stage	Jan	Feb	Mar	Apr	May	June	Jul	Aug	Sep	Oct	Nov	Dec
Adult Migration			Optimal: ≤ 59°F (15°C) Critical: 62.6 – 68°F (17 – 20°C) Lethal: >68°F (20°C)									
Adult Holding (Spring-Run Only)				Critical: 62	55°F (13°C) 2.6 – 68°F (1 8°F (20°C)							
Spawning							Optimal: < 57°F (13.9°C) Critical: 60 - 62.6°F (15.5 - 17°C) Lethal: 62.6°F or greater (17°C)					
Incubation and Emergence								Critical: 58	55°F (13°C) 3 – 60°F (14. 0°F (15.6°C)	4 – 15.6°C)		
In-River Fry/Juvenile	Optimal: <60°F (15.6°C), young of year rearing; <62.6°F (18°C), late season rearing (primarily spring-run) Critical: 64.4 – 70°F (18-21.1°C) Lethal: >75 °F (23.9°C), prolonged exposure											
Floodplain Rearing*	Optimal: 55 – 68°F (13 – 20°C), unlimited food supply											
Outmigration	Optimal: <60°F (15.6°C) Critical: 64.4 - 70°F (18 - 21.1°C) Lethal: >75°F (23.9°C), prolonged exposure											

Sources: EPA 2003, Rich 2007, Pagliughi 2008, Gordus 2009.

Millerton Reservoir

Capacity ~ 520,500 AF

Right Temperature, Right Time

Critical Elements:

- A spring pulse to move juveniles downstream
- Enough cold water for adults to over summer, and maintain temperatures for egg incubation
- Filling of the cold water pool
 - Timing of inflow indicates final temperature of cold water pool
 - High inflow years with flood releases "flush" the cold water pool

Flood years

Water Temperature Management

Summary

- Understanding the timing of snowmelt allows prioritization of objectives
- Limited control of temperature in wet years, but better forecasts allow you to:
 - Take reservoir management actions early
 - Prevent unnecessary flood releases from river outlet
 - Manage overtopping

FLOOD FLOW RAMP-DOWN

Flood Flow Ramp-Down

- Flood flows are managed for the protection of life and property, environmental objectives may also be achieved
- Natural hydrograph recession ~ 5% flow reduction per day
- How reservoirs "ramp-down" is important ecologically

Abandoned flood plain (terrace)

Transition from Floodplain to Channel is Critical

Active flood plain

Bankfull stage

Active-channel stage

Natural sevee

Thalweg

Flood Flow Ramp-Down

Riparian vegetation provides shade, cover, and food for fish

Floodplains are where juvenile salmon grow best

Flood Flow Ramp-Down

How do we manage flows for our limited floodplains?

1) Reduce Fish Stranding

- Gradual ramp-down prevents juvenile salmon from getting stuck on a drying floodplain
- Maximum stage reduction rate depends on floodplain topography

2) Recruit Riparian Vegetation

- Gradual ramp-down provides suitable surface for germination and rooting of vegetation
- ~ 2.5 cm/day reduction in river stage

Riparian Vegetation Recruitment

Idealized ramp-down

Riparian Vegetation Recruitment

Ramp-down Template

Can these ramp-downs be implemented with little to no impact other water users?

Yes, if:

- Runoff forecast is accurate (volume and timing) as reservoir reaches capacity
- Ramp-down begins BEFORE reservoir has filled

Retrospective Assessment

2017 Reservoir Storage Re-analysis

Retrospective Assessment

2017 San Joaquin River Flows Re-analysis

Flood Flow Ramp-Downs

Summary

- With a <u>high level of forecast accuracy</u>, gradual ramp-downs for riparian vegetation recruitment can be executed with little impact to residual water supply
- With a <u>moderate level of forecast accuracy</u>, ramp-downs to prevent juvenile salmon stranding can likewise be executed

Short-term runoff forecasts near time of reservoir filling are critical to floodplain management

GROUNDWATER MANAGEMENT

Sustainable Groundwater

- Precipitation variability encourages groundwater use during drought
- Sustainability
 achieved through
 groundwater recharge
 in wet years aquifer
 as a reservoir or
 "conjunctive use"

Dettinger et. al 2011

Sustainable Groundwater

SGMA - Sustainable Groundwater Management Act

(CA-2014)

- Approved
 Sustainability Plans for critical basins due in 2020
- Groundwater balance must be demonstrated by 2040

Critical Overdraft Basins

Groundwater Recharge

- Recharge basins are being constructed where soils are favorable in the San Joaquin Valley
- Recharge volume limited by conveyance capacity, recharge rate, and price per acre-foot

Groundwater Recharge

Summary:

It is critical to have early confirmation of how much water is unstoreable

- Lower price
- Utilize canal capacity when it is not being used for irrigation

Summary Table

Environmental Flow Factor	Important Water Years	Important Timing	Ideal Runoff Forecast Accuracy		
1) Restoration Flow Scheduling	Critical through Normal-Wet	Mar	+/- 50 TAF WY in Critical and Dry conditions, otherwise +/- 100 TAF WY (90% exceedance)		
2) Water Temperature Management	Normal-Dry through Wet	Mar – May	Monthly runoff +/- 100 TAF		
3) Flood Flow Ramp-Down	Normal-Wet, Wet	May – Jul	Monthly runoff +/- 50 TAF		
4) Groundwater Management	Normal-Wet, Wet	Jan – Mar	Certainty that runoff will exceed reservoir storage		
Critical Dry	Normal-Dry	Normal-Wet	Wet		

1450 TAF

2500 TAF

<670 TAF 930 TAF

Conclusion

What does better runoff forecast accuracy and timing buy you?

- 1. More effective conjunctive use of water
- 2. Less anxiety among stakeholders
- 3. More <u>successful river restoration</u>
- 4. Less impact to water users from environmental flows
- 5. Adaptation to a changing climate